

1

Satellite Fleet Operations Using a Global Ground Station Network

Naomi Kurahara Infostellar

Japanese university satellites

Image via University Space Engineering Consortium, http://unisec.jp/wp/wp-content/uploads/2016/06/UNISEC_Satellites_160120_JP_s.jpg

Japanese university satellites

Image via University Space Engineering Consortium, http://unisec.jp/wp/wp-content/uploads/2016/06/UNISEC_Satellites_160120_JP_s.jpg

Next steps for the small satellite community

Satellite bus technology has progressed, technology demonstrations have been completed.

What do we do next? How do we get a research budget? How can we create sustainable space applications?

Most of the next satellite mission require satellite constellations. How do we operate 10s/100s of satellites?

Contents

Satellite Fleet Operations Using a Global Ground Station Network

- 1. Constellation operation
 - a. Satellite mode
 - b. Procedure
 - c. Operation phase
- 2. Planning process
- 3. Foreseeable issues
- 4. Pass duration analysis

What is effective constellation operation?

First, what is the purpose of satellite operation in general?

- Execute a mission (one time or periodic, manual or automatic)
- Conduct satellite maintenance
 - Maintain each component

As a constellation...

- Mission execution is carried out by multiple satellites.
- Satellite maintenance (housekeeping operations) should be carried out automatically. Human operators monitoring hundreds of satellites is inefficient.

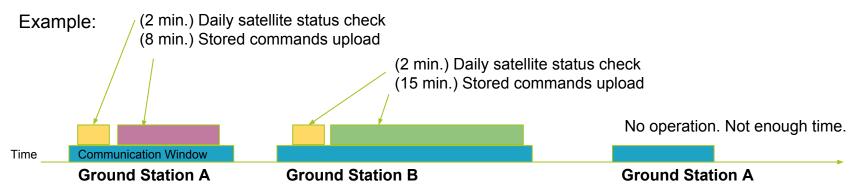
Key concepts of satellite operation

- Satellite mode (Pre-defined)
- Procedure (Pre-defined)
- Operation phase (Pre-defined)
 - Initial operation phase
 - Nominal operation phase
 - EOL phase
 - Emergency
- Planning

Satellite mode

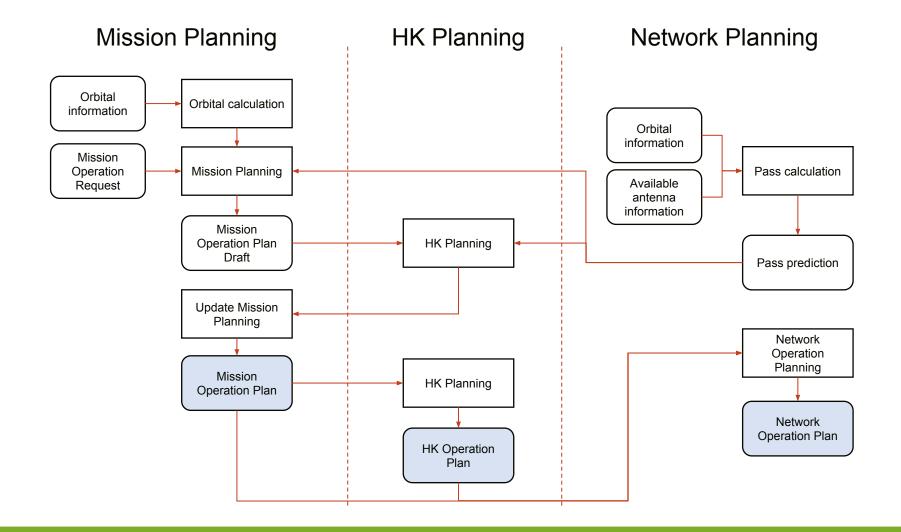
- A satellite mode defines a configuration of satellite
 - Eg. Mission execution mode, maneuver mode, battery recovery mode, etc.
- For each mode, followings are fixed
 - On/Off status of every components
 - Mode of each component turned on
 - Power consumption

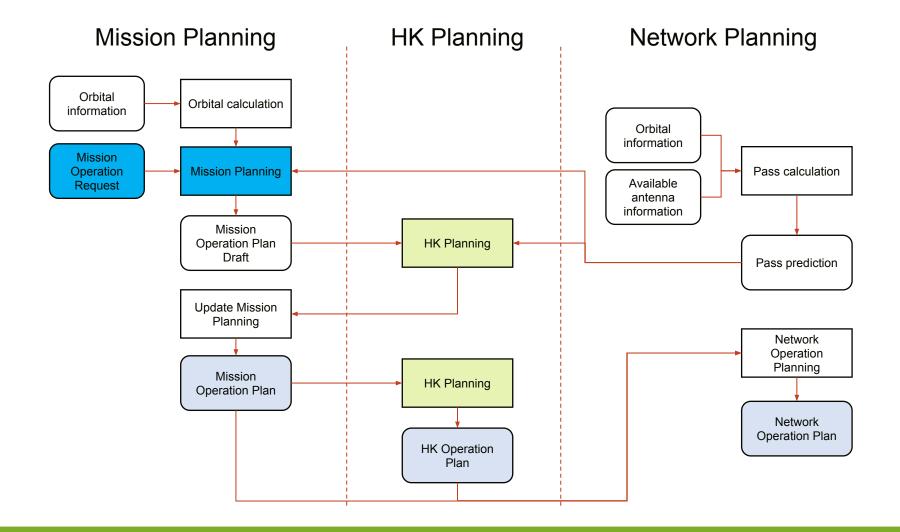
Procedure



- A series of commands and telemetry to be checked in order to execute an operation
- Optionally includes sub-procedures
 - Depth determined by satellite operator

Procedure-oriented planning


- A process for building a satellite operation plan
 - What do you want the satellite to do and when?
 - Which procedures are used?
 - Satellite mode change required?
 - Which components are controlled?
 - How much time does it take?



Planning Process (1/2)

- 3 types of planning
 - Mission execution planning
 - For mission execution
 - Housekeeping operation planning
 - For satellite maintenance
 - Network operation planning (Antenna allocation)
 - Based on available antennas

Problems

- 1. How to define mission operation requirements \rightarrow How to plan mission operation
- 2. How to automate, i.e Autonomous HK operation
- 3. The number of available antennas creates a bottleneck in satellite operation planning

Questions

- What is the constellation's mission?
- What kind of mission instruments are on board?
 - How large is one unit of mission data?
- Is there a specific mission target area or user?
- How much mission data can the satellite hold at maximum?
- What is the communication data speed?
 - Mission data downlink
 - HK uplink
 - HK downlink
- How long does the satellite transmitter run?
 - Nominal case
 - Maximum case
- What does the operator need to do for housekeeping operation?
- What does the operator need to do for mission operation?

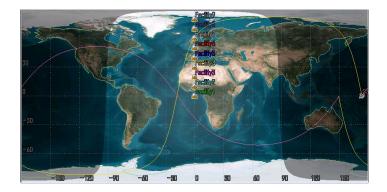
Problems

- 1. How to define mission operation requirements \rightarrow How to plan mission operation
- 2. How to automate, i.e Autonomous HK operation
- 3. The number of available antennas creates a bottleneck in satellite operation planning

Ground System Design

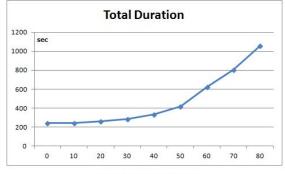
- How much data needs to be downlinked to the ground?
 - Amount of mission data
 - Amount of housekeeping data

• How long does a satellite communicate with a single ground station?

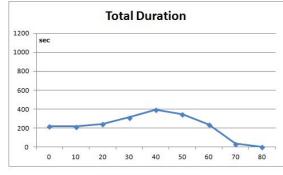

Analysis of Pass Duration (1/2)

- Simplified analysis for Polar Earth Orbit and ISS orbit
- Orbit and ground station parameters:

Orbit Parameter	Value	
Apogee Altitude	600 km	400 km
Perigee Altitude	600 km	400 km
Inclination	98 deg	51 deg
Argument of Perigee	0 deg	0 deg
RAAN	0 deg	0 deg


	Ground Station Location		
Ground	Latitude: 0, 10, 20, 30, 40, 50, 60, 70, 80deg		
Station	Longitude: 0 deg		
A – I	Altitude Reference: WGS84		

600km, 98 deg Inclination

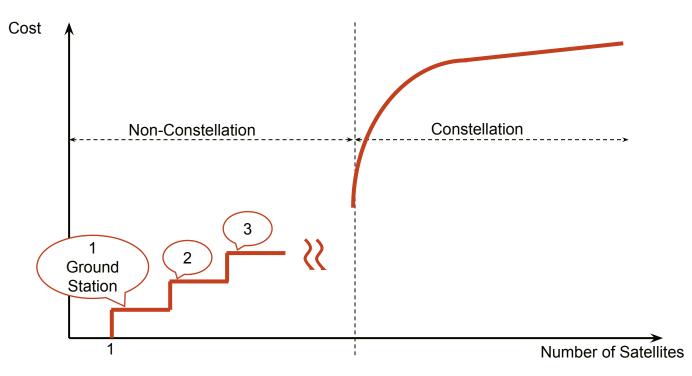

Latitude (deg)	Number of Pass, Week/day(ave.)	Total Pass Duration/Week (min)	Average Pass Duration/Day (min)
80	90/13	1056	150
70	74/11	807	115
60	64/9	625	89
50	42/6	417	59
40	33/5	331	47
30	29/4	286	40
20	26/4	262	37
10	24/3	245	35
0	24/3	240	34

400km, 51 deg Inclination

Latitude (deg)	Number of Pass, Week/day(ave.)	Total Pass Duration/Week (min)	Average Pass Duration/Day (min)
80	0/0	0	0
70	12/2	34	4
60	30/4	234	33
50	36/5	344	49
40	42/6	391	55
30	39/6	312	44
20	29/4	242	34
10	25/4	215	30
0	27/4	216	30

Ground Station Latitude, deg

Questions



- How many HK operations actually happen per day?
 - What is the minimum length of time for HK operations?
- How many mission data downlink operations actually happen per day?
 - What is the minimum length of time for mission data downlink operations?

Ground System Cost (CAPEX/OPEX)

Ground system cost doesn't increase linearly.

- More research is required to discuss effective mission planning for constellations.
- Significant potential in networking in order to connect and use discarded passes.
- More research required to determine how many passes can realistically be used.

Thank You

Contact: naomi@istellar.jp