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ABSTRACT 

Space Situational Awareness (SSA) is vital to maintaining our Space Superiority. We present an innovative, high 

fidelity, time-based simulation tool, RT-PROXOR™ (Real Time Proximity Operations and Rendering), which supports 

SSA by generating realistic mission scenarios including sensor frame data with corresponding truth. This is a unique 

and critical tool for supporting mission architecture studies, new capability (algorithm) development, 

current/future capability performance analysis, and mission performance prediction. RT-PROXOR™ provides a 

flexible architecture for sensor and resident space object (RSO) orbital motion and attitude control that simulates 

SSA and rendezvous scenarios. The major elements of interest are based on the ability to accurately simulate all 

aspects of the RSO model, viewing geometry, imaging optics, sensor detector, and environmental conditions. 

These capabilities enhance the realism of mission scenario models and generated mission image data. This paper 

advances the work presented in our 2017 PROXOR™ paper, and presents our new RT-PROXOR™ capabilities, 

current execution time performance results, and path forward. 

 

RT-PROXOR™ is designed as a component in a software-only or Hardware-In-The-Loop (HWIL) simulation. In 

this latest version, much of the code is resident on GPUs (industry COTS graphical processing units), thus greatly 

increasing execution speed.  RT-PROXOR™ uses mission scenario information to set up the scenario to be modeled, 

and then each frame it is given the current pointing information and clocking and then generates the image using 

high fidelity optics and detector models. Given the pointing angles and orientation for the current frame, we 

calculate the changing solar and Earth illumination angles of the satellite. The synthetic satellite image is rendered 

at high resolution and aggregated to the focal plane resolution resulting in accurate radiometry even when the 

RSO is a point source. Critical aspects such as intra-frame smear and a high-fidelity detector model are included. In 

this paper we present an overview of RT-PROXOR™ plus simulation results (generated images) for SSA missions.   

 

 

INTRODUCTION 

The US is increasingly dependent on its space assets for commercial, civil, DoD, and intelligence community 

use.  For example, warfighters are extremely reliant on GPS for support of surgical strikes.  Adversaries see our 

ever-growing dependence on space assets as a critical vulnerability to be exploited and as they look to counter  US 

superiority in space, it will become the next battlefield.  The US government has a need to catalog all objects in 

space, characterize them, detect uncorrelated targets and identify threats/risks to our space assets.  To meet those 

needs, the Air Force and Intelligence Community continue to develop space-based and ground-based systems for 

determining and exploiting metric (location) information and resolved and non-resolved signatures of RSOs and 

targets, with the long term objective of identifying objects and deriving quantitative and functional information 

about them1.   

Threats from foreign nations are becoming more prevalent. Plus the sheer number of objects in space 

(upwards of 22,000 objects are being tracked with >= 10 cm size and about 500,000 objects are present in space 
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from 1-10cm size)* makes it increasingly difficult to maintain custody of these objects and difficult to ensure we 

can find new, potentially adversarial objects, detect changes in objects, and identify nefarious behavior in a timely 

manner.  The growth in trackable objects is shown in Exhibit 1.  The threats to our space assets in GEO are of 

particular concern, and additional space-based SSA platforms need to be fielded to counter this threat.  A notional 

space-based observer searching the GEO belt is shown in Exhibit 2.  There is a need to develop algorithms and 

perform optical system design trades in support of SSA to solve uncorrelated track (UCT) challenges: resolving 

conjunctions, detecting new targets, and detecting changes in target characteristics2.  This paper covers the Ball 

RT-PROXOR™ simulation tool developed to support solutions to fill these critical gaps and key shortfalls in space 

surveillance capabilities.  To support these shortfalls, there is a need to develop and field robust algorithms, which 

must be tested over a wide array of mission scenarions, including modeling & simulation of long scenarions, e.g., a 

Day In The Life, that have high fidelity for confidence building.  Testing needs to be done for both open loop and 

closed loop systems.  The focus of RT-PROXOR™ is on fast simulation to support end-to-end software and 

hardware testing in an efficient manner, allowing for hundreds of long-duration mission scenarios to be run, 

ensuring robust algorithms are developed early in the development efforts. 

Performing a wide spectrum of tasks from SSA algorithm development including implementation and testing, 

to SSA characterization and mission-level analysis with varying degrees of fidelity requires multiple tools with 

differing objectives.  We have previously developed a tool called PROXOR™, which Ball uses to produce very high 

fidelity images over time34.  PROXOR™ is an excellent tool for performing analyses that do not require close to real-

time performance, and hence its full high fidelity capabilities can be brought to bear.  This is an extremely valuable 

tool for accurately representing true satellite images for purposes of characterization, and accurate performance 

estimation over short time periods.  On the other extreme, there is a need for real-time or near-real-time scene 

generation that can generate minutes to hours of mission data (scenes).  This capability is required for robust 

testing of algorithms over time, and also for mission analyses / Day-In-The-Life (DITL) testing.  We are currently 

developing this tool, called RT-PROXOR™, which is a critical component in our end-to-end Software simulation and 

High-performing Algorithm Development Environment (SHADE).  This is primarily designed for closed loop 

processing, but is equally applicable to open loop processing (generation of “datacubes”, i.e., images over time) 

scenarios.  This paper provides a snapshot in time (our Spiral 5 version) of our current RT- PROXOR™ development 

activities, while also providing a brief overview of Ball’s mature PROXOR™ tool. 

RT-PROXOR™ currently simulates the observer(s) platform and sensor pointing, trajectory(ies), and sensors. 

We include high fidelity detector models, artifacts, RSO trajectories, star fields (including viewing high star count 

areas such as the galactic core), and environmental effects (uniform background and radiation hits).  For RT-

PROXOR, the sensors are assumed to be space-based.  RT-PROXOR™ is radiometrically accurate (for Lambertian 

spheres), and generates realistic high fidelity images over time that are used, for example, to i) assess and compare 

potential mission architectures (e.g., GEO constellations vs. GEO/LEO constellations for SSA or Missile Warning), 

and ii) provide image frames over time in RT/Near-real-time (NRT) to support SSA algorithm development and 

testing and to verify algorithm performance (e.g., Pd vs. SNR/visual magnitude performance, metric accuracy, etc.), 

The primary objective of RT-PROXOR™ is to provide realistic data for development and test so that SSA algorithms 

can work well in the real world “right out of the chute”. This in turn improves the probability of successful mission 

execution, whether the mission is to find threats as part of Indications & Warning (I&W), avoid collisions, perform 

RSO characterization, or execute other Space Protection missions. 

 

                                                                 
* See, e.g., http://www.bbc.co.uk/news/science-environment-14763668  

http://www.bbc.co.uk/news/science-environment-14763668
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Exhibit 1. The growth of orbital objects has increased significantly over the last 50 years with large spikes due to 

debris caused by intentional (Chinese ASAT test) and unintentional collisions (Iridium/Cosmos). 

 
Exhibit 2. Example mission scenario showing geometry of observer in Search mode viewing RSOs and stars in its 

Field of Regard (FOR).† 

 

PROXOR™/RT-PROXOR™ OVERVIEW 

Ball’s PROXOR™ tool, shown in Exhibit 3, provides a high-fidelity and innovative simulation architecture for 

modeling the orbital motion, attitude control, radiometry and focal plane images of a sensor or multiple sensors 

and multiple RSOs in realistic SSA, rendezvous, and proximity operation scenarios.  PROXOR™ enables the 

simulation of real SSA mission scenarios, including resolved and unresolved space objects, using actual-validated 

satellite data (e.g.., real DMSP and Intelsat spacecraft surface properties).  PROXOR™ has a Graphical User 

Interface that facilitates setting up mission scenario and sensor modeling parameters, as well as selecting 

satellite(s) of interest from an expandable library of satellite models.  Ball’s 2017 Space Symposium paper 

(referenced above) contains more information about the advanced capabilities of the full PROXOR™ version. 

Ball has developed RT-PROXOR™ to address a critical need for supporting NRT/RT scene generation for 

Software In the Loop (SWIL) and Hardware In the Loop (HWIL) applications, and is therefore focused on both 

execution speed and fidelity – and finding the right balance between the two.  Required fidelity in many cases can 

be maintained at much faster speeds than the full PROXOR™.  Depending on the exact nature of the required 

imagery / goals of the analysis, fidelity knobs can be “turned”, to greatly increase execution speed, while still 

maintaining the level of fidelity required.  For example, if the user wants to include RT- PROXOR™ in a HWIL 

                                                                 
† Note that high fidelity PROXOR™ images are shown below in Exhibits 10, 12, and 13. 
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simulation and the frame-to-frame motion is not too large (~< 0.1 pixels/frame), then intra-frame smear can be 

modeled at reasonable fidelity without generating the full baseline intraframe modeling, which internally renders 

hundreds of frames for every FPA frame.  This would greatly reduce execution time, while not sacrificing the ability 

to generate realistic data.  The ability of RT-PROXOR™ to generate imagery fast (NRT/RT) over long mission 

periods with good fidelity is invaluable in i) evaluating and predicting mission performance as part of a larger 

end-to-end mission-level analysis tool; and ii) developing, testing, and verifying successful algorithms for SSA 

including RSO detection, tracking, and  characterization for all objects (including high interest objects), leading 

to increased confidence in mission success. In general, RT-PROXOR™ is a subset of the full PROXOR™.  The key 

differences between PROXOR™ and RT-PROXOR™ for space-based EO imaging are i) RT-PROXOR™ has significantly 

reduced execution speed (up to a factor of 300 improvement), ii) RT-PROXOR™ currently models all objects as 

Lambertian spheres and therefore does not yet model extended objects using our Satellite library‡, iii) RT-

PROXOR™ can use either full multi-kernel rendering of stars (which PROXOR™ also does) or a fixed kernel, which is 

much faster and appropriate if the scenario does not have significant clocking or other nonlinear motion, iv)  RT-

PROXOR™ generally assumes pointing is external§ since its primary purpose is to be part of an end-to-end Software 

simulation or HWIL simulation, though it also does perfect pointing to a designated target satellite if configured to 

do so, and v) RT-PROXOR™ does not include Zernike coefficients for modeling optical aberrations, or second order 

detector effects.  

 

 
Exhibit 3. PROXOR™ Modeling & Simulation tool is used to model mission scenarios, support SSA algorithm 

development and verification, support analyses using generated data and SSA algorithms that inform optical 

system design trades [focal plane Field of View (FOV) / Instantaneous FOV, aperture size, PSF, noise, etc.] 

 

The focus of RT-PROXOR™ is on  space-based scenarios, where it i) independently propagates the positions of 

the observer and one or more target satellites using TLEs from the industry-standard SGP4 propagator, or ii) uses 

ECI coordinates (encompassing the start of integration through end of integration period motion for each satellite) 

provided by the external Software Simulation or HWIL interface.  The viewing and illumination angles for each 

target are calculated as a function of time, and 2-D images of each target are rendered for each frame.   

RT-PROXOR™ focuses on visible wavelength imagery, but can also render at select short, medium, and long 

infrared wavelengths.  The sensor model is used to determine the sampling of the targets based on pixel IFOV 

                                                                 
‡ This capability will be added in the near future. 
§ RT- PROXOR™ does autonomously propagate the intra-frame motion of the orbits using the SGP4 

propagator. 
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(which is oversampled) and the range to the target.  RT-PROXOR™ automatically includes additional oversampling 

if a minimum number of points are not placed across the target.  After high-resolution rendering, the target image 

is aggregated back to the sensor model sampling.  This imaging approach guarantees correct spatial phasing and 

accurate radiometry even for point source targets.   RT-PROXOR™ uses an analytic Lambertian sphere renderer to 

enable efficient modeling of target satellites, which are generally adequate for SWIL/HWIL applications, where 

speed is of the essence. Exhibit 4 shows the RT-PROXOR™ functional block diagram. 
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Exhibit 4: The RT-PROXOR™ Functional Block Diagram shows the production of a single image frame of digitized 

sensor data.  

 

PATH TO RT-PROXOR™  

Our approach to generating a RT/NRT tool for scene generation is to leverage key parts of our high fidelity 

PROXOR™ tool, while realizing signficant speed improvements, which allows for more robust testing and reduces 

implementation time.  In addition, some verification and validation work has already been conducted on the full 

PROXOR™, which allows us to shorten the testing on RT- PROXOR™ by directly comparing outputs of PROXOR™ 

and RT-PROXOR™.  Speed improvements are primarily realized by moving functionality to the GPU(s).  GPU 

processing cores can perform very repetitive and parallelizable processing tasks at high speed.  This applies to 

many  critical ‘long pole’ items such as star rendering, where an optical model is generated along with a line of 

sight estimation for each star in the sensors field of view over the course of the integration period.  The 

implementation path from PROXOR™ to RT- PROXOR™ is shown in Exhibit 5. 

 

Software Code Base 
Conversion 

Convert core Matlab functionality into C++ based code for Graphical 
Processor Unit (GPU) execution. 

Updated Pointing Mechanisms 
Internal pointing and attitude references were updated from DCM (direction 
cosine matrix) based expressions to purely 4 element quaternions. 

Orbital Propagation Upgraded the internal orbital propagator to use the industry standard SGP4. 

  

SGP4 describes all tracked space objects by the US government using a two-
line element (TLE) vector database – facilitates easy modeling of satellites of 
interest for any date/time. 

Hardware in the Loop (HWIL) 
Interface 

-A packetized frame by frame interface for injecting target/acquisition 
satellites was formulated to allow scenarios/maneuvers in real-time that 
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cannot be described by SGP4 TLEs. 

  
-This expands upon the capabilities of specialized use cases of 
rendezvous/acquisition scenarios. 

  
-Allows the updating of system parameters (focal plane/field of 
view/integration period) in real-time to switch a platform’s operational mode. 

  
This interface can be injected in a purely software controlled interface as well, 
with the frame by frame updates ingested via a pregenerated JSON file. 

Exhibit 5:  Major RT- PROXOR™ development steps are on a direct path towards real-time execution 

 

Two important goals of the development are to i) build an end-to-end Software simulation for very early 

development that potentially provides faster-than-real-time execution, and ii) build the RT-PROXOR™ real-time 

HWIL system so that it could test complete image processing / tracking systems in hardware early in the program, 

operating at full speed.  Typically, the goal here is 4 – 30 frames per second.   Benefits of software simulation using 

Ball’s SHADE tool and custom HWIL that leverages previous Ball efforts are shown in Exhibit 6.   

 

Framework Benefits 

Software Simulation using 
Ball’s SHADE tool 

-Available very early in the design process, before HW Engineering Models 
(EMs) are available 
-Increases execution speed and potentially can run faster than real-time, so 
that, e.g., missions such as Day-In-The-Life can be tested in much less than a 
day of real time 
-Can easily make updates and quickly re-evaluate performance in Ball’s 
flexibile SHADE architecture 

Custom Hardware in the Loop 
(HWIL), leveraging existing Ball 
HWIL solutions 

-Available early in the design process, before final hardware is available 
-Runs in real-time on embedded, automated processor in HWIL architecture 
-Can test and find issues with the actual hardware interfaces, prototype 
firmware/FSW code early in the program before implementation and test of 
the final system occurs 
-Increases execution speed and runs embedded hardware in real-time, 
allowing hardware interfaces, algorithm performance, throughput and 
latency to be evaluated and iterated upon to enhance performance 
-Can easily make updates and quickly re-evaluate performance with Ball’s 
flexibile HWIL architecture 

   

Common to both SW and HW 
Sim 

-Uses RT- PROXOR™ Scene Generator to rapidly generate images with 
medium-to-high fidelity  
-Can run many hours of testing over many varied mission scenarios to 
increase algorithm quality and robustness 
-Fully automated  
-Reduces overall schedule by retiring risks early in the program, rather than 
later when any changes require much more schedule time  
-Increases program affordability by finding issues and fixing them early in the 
program when required labor is much less costly 
-Supports both open loop and closed loop testing 
-Common scenario specification, top level interfaces, visualization and 
analysis tools are used in the SHADE Software Sim and our corresponding 
HWIL Sim, making it very efficient to move back and forth fromSoftware 
Simulation to/from HWIL  

 

-Both approaches use RT-PROXOR and can operate via data cubes or by a 
packetized frame by frame interface;  the packetized interface supports: 
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     --per frame pointing based on algorithm desired pointing and gimbal 
modeling 
     --injecting target/acquisition satellites to allow scenarios/maneuvers in 
real-time that cannot be described by SGP4 TLEs.-This expands upon the 
capabilities of specialized use cases of rendezvous/acquisition scenarios, 
allowing us to better model/address threats. 

 

-Allows the updating of system parameters (focal plane/field of 
view/integration period) in real-time to switch a platform’s operational mode. 

  
Exhibit 6:  Benefits of Software and HWIL Simulation  

 

Software Simulation 

Block diagrams of SHADE are shown in Exhibits 7 and 8.  In addition to performing modeling & simulation for 

open loop sidereal and rate track Space Situational Awareness missions, Ball simulates closed loop rate tracking on 

resident space objects and other objects of interest.  SHADE includes high fidelity models for image generation (via 

RT-PROXOR™), the gimbal/plant, and spacecraft and target dynamics as well as algorithms for image processing, 

tracking, and control (for command generation).  SHADE can be run closed loop (Exhibit 7) or open loop (Error! R

eference source not found.8).  RT-PROXOR™ provides truth so that the performance of the mission image/track 

processing functions can be evaluated and optimized under realistic conditions.  This is a crucial piece necessary 

for performing realistic mission data analysis for single observers, as well as constellations.  In closed loop mode, 

RT-PROXOR™ ingests the Line-of-Sight (LOS) pointing from the control system and generates the high fidelity 

image.  This image contains the stars and RSOs in the field of view of the observer and is fed to the image 

processing algorithms.  The image processing algorithms include artifact correction, background removal, 

detection, location, and initial discrimination.  The tracking algorithms include stabilization (coordinate 

transformations to inertial space), tracking, and target of interest (TOI) identification.  The control algorithms 

include compensators to ensure closed loop stability and optimized system performance.  Closed loop tracking has 

a number of advantages to open loop.  It concentrates the target energy, improving the SNR and centroid 

accuracy, hence allowing detection of dimmer targets, and improved tracking performance.  It also provides the 

ability to track the target over large fields of regard.  Closed loop tracking can be initiated via a single cue from the 

ground, or via autonomous acquisition.  SHADE also has an Observations (Obs) generator for bypassing the image 

generation and image processing for rapid turn-around and parallel tracking algorithm development and testing.  

Ball’s SHADE helps reduce risk for future missions by characterizing the ability to robustly track space-based 

targets, and to optimize systems for increased metric accuracy,  leading to improved orbit determination (OD) for 

TOIs and improved anomaly detection and therefore provides enhanced Indications & Warnings (I&W).   

 

HWIL Simulation 

A block diagram of our HWIL (also called Payload-in-the-loop (PITL)) architecture is shown in Exhibit 9.  This 

uses a similar functional architecture to SHADE, but uses an Engineering Model (real hardware processor) for the 

processing algorithms, and appropriate hardware interfaces from the RT-PROXOR™ Scene Generator/Scene 

Injector to the processing board, and from the processing board outputs to the Gimbal and Spacecraft Bus models.  

HWIL testing provides the first opportunity in the program to do thorough testing on real hardware, greatly 

reducing cost, schedule, and technical risk. 
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Exhibit 7: SHADE Closed Loop Block Diagram 
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 Exhibit 8: SHADE Open Loop Block Diagram 
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Exhibit 9: RT-PROXOR™ used for Hardware-in-the-Loop testing 

 

RT-PROXOR™ processing  

There are multiple steps to simulate an image.  Prior to image generation, a mission CONOPS is developed and 

a set of parameters describing the scenario are generated and exported to a javascript notation file (JSON).  This 

file contains all configurable elements of RT-PROXOR™, describing the target satellites of interest, the acquisition 

(observer) satellite, optical characteristics of the system, the detector modeling, and mission characteristics 

(start/stop times, orbits, ranges to targets, etc.).  Once the mission parameters are generated, RT-PROXOR™ can 

start generating the simulated frames. There are five main steps entailed in generating each RT-PROXOR™ frame. 

 

Generate the Position and Attitude of the Acquisition Spacecraft/Gimbal and All Other Satellites of Interest. 
The TLE data of the acquisition satellite as well as all target satellites is propagated (determined by the 

temporal oversampling factor, an input parameter) many times during the integration period to simulate intra-
frame smearing. 

These parameters can be overridden or added upon via the HWIL interface.  This mechanism would facilitate 
the ability of a satellite to perform a maneuver outside the bounds of its predefined orbital path. 

Specialized tracking modes can be developed by updating the pointing via HWIL interface (such as perfectly 
pointing towards a satellite of interest or a particular point of interest in the star catalog). 

The gimbal position data has jitter components (both high and low frequency) that can be added to the 
pointing data. 

Determine All Stars That are Visible on the Focal Plane 

Generate a list of culled stars spanning the gimbal pointing throughout its integration period. 

The full star list used for this effort is a 2.56 million star catalog.  

Create the Background Image of All the Stars onto the Frame Scene 

If the integration time of the focal plane is configured to be long, and the gimbal system is moving during this 
time period, there may be signficant streaking/clocking on each star. 

Stars may end up looking stationary, streaking in a direction, or arc shaped depending on the line of sight 
motion. 

The optical model characteristics (the point spread function of the optics) are applied to each star during this 
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phase. 

This is generally the most time consuming module due to the large number of stars that could be on the focal 
plane, and treating each star individualy to account for motion as translated onto the focal plane. 

Render the Target Satellites 

Currently, RT-PROXOR™ uses Lambertian spheres to model point source satellites of interest.  The full Matlab 
version has the capability to use in-house developed rendering as well as the Satellite Assessment Center 
renderer to simulate extended targets as they approach closer on the focal plane. 

The earth umbra as well as sun angles are used for Lambertian sphere illumination.  If the target is too small, 
it is first upsampled to accurately model illumination effects due to the light source geometry. 

Smearing due to the line of sight changing throughout the integration period as well as optical modelling 
effects are applied to each target analagous to the star rendering phase. 

Add the effects of the High-Fidelity Detector Modeling 

This module applies the final parameters of the acquisition system to complete the generation of the image. 

This includes effects such as instrument background noise, quantum efficiency, dark current, shot noise, 
randomly generated spurious radiation tracks, read noise, and various types of quantization models/effects. 

Exhibit 10. Steps to Generate a Frame of Data 

 

PROCESSING ARCHITECTURE 

A multi-threaded architecture was designed and implemented correlating to logical divisions in the processing as 

outlined in Exhibit 4 above.  Furthermore, it is conceivable that each thread could have its own dedicated GPU, as 

our approach is designed to take full advantage of multiple GPUs.  To this point, we have only used a single GPU 

resource but there is flexibility in the architecture to expand upon this, which has the potential to further reduce 

per-frame execution time.  Exhibit 11 outlines the software architecture, and Exhibit 12 gives a top level 

description of the “roles and responsibilities” of each thread.   
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For each frame:

Import JSON simulation 
parameters

Framework
Thread #1

Frame Processing
Thread #2

Gimbal & Spacecraft
Model

Thread #4

Target Processing
Thread #3

Wait for Platform data

Wait for Platform data

Platform data

Initialize background 
scene

Initialize target scene

Find all stars near 
detector

For each star:
Render star on star 

scene

For each target:
Render target on target 

scene

Wait for rendered 
target data

Combine target scene 
and star scene

Detector simulation

Output Scene

Quit

Wait for Scene data

Start all other threads

Quit Quit Quit

Aux. functions:
Image display, etc. 
(not implemented)

Generate Platform 
data:

Position of target(s)
Position of acq. satellite

Position of gimbal
Jitter, Etc.

 
Exhibit 11: Top Level Software Processing Architecture. 

 

 

 

Thread  Description 

Framework Main execution thread: 

  -Ingests the simulation JSON Parameters 

  -Starts all the remaining threads 

  -Responsible for auxilary functions (displays/ image metadata / status) 

Gimbal and Spacecraft -Simulation of the imaging platform and targets 

  -Interface between RT-PROXOR™ and HWIL input/output 

  
-Current frame simulation parameters are derived in this thread (such as time 
broken up into integration subsamples) 
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-Pointing line of sight (LOS) vectors of the gimbaled sensor as well as positions of 
all objects as a function of the integration subsample are generated. 

  
-Low and high frequency jitter is computed as a function of the integration 
subsample and applied to the LOS. 

Frame Processing -Initial star catalog culling based on the LOS throughout the integration period. 

  -Apply optical effects and LOS to each culled star and place on the focal plane. 

  -When data is returned from the Target Processing: 

  -Combine each target chip with the rendered star field 

  -Apply detector modeling effects 

Target Processing 
-For each target, generate illumination angles and render a radiometrically 
correct lambert sphere. 

  -Apply optical effects to each target chip. 

  -Interpolate the target to the right size based on field of regard and distance. 

 

Exhibit 12: Architecture Overview 

 

The goal of the simulation architecture outlined is to be lightweight (low overhead threads with mutex based 

synchronization offloading the bulk of the processing to GPU resources), and expandable in the future as key 

modular components are improved/expanded upon.  The above runtime architecture uses a modular object 

oriented C++ design to implement the design objectives.  The simulation “world” is broken down into logically 

inherited components and subcomponents that are intended to be easily swapped in a plug and play manner 

when future improvements are envisioned (such as a different detector model, or a completely different approach 

of rendering stars).   

 

ANALYSIS AND RESULTS 

Verification under this development spiral has mainly been done at the unit test level.  The key components 

(such as the detector model/optical model/target model/etc…) have mex interfaces to directly call the functional 

blocks from Matlab, and compare RT-PROXOR™ results to the Matlab equivalent model.  The Matlab version of 

PROXOR™ has been extensively independently tested to verify radiometry, as well as validated against real satellite 

data for pointing and composite starfield rendering. 

The current RT-PROXOR™ implementation is, for worst case conditions, at least a factor of 300 better than the 

original PROXOR™.  Although realistic scenario cases are of more general interest, a worst case scenario was 

developed to compare the frame execution time associated with the various releases of the RT-PROXOR™ software 

package and assess overall timing improvements.  This entails staring at a particularly dense region of the Milky 

Way galaxy and performing a high rate slew.  Internally, the star rendering algorithm needs to keep track of and 

render each star at each integration subsample.  A scenario like this saturates the number of GPU cores utilized in 

the frame processing, demonstrating worst case star rendering performance.  The following figure (Exhibit 13) 

denotes a 2048 by 2048 focal plane, with a two second integration period, 501 subsamples per integration period, 

roughly 3220 stars apparent in the field of view,  with a high angular rate slew causing severe streaking in each 

star.   
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Exhibit 13: Simulated image with worst case streaking is used for benchmarking 

 

The following table (Exhibit 14) highlights the frame execution time of this particular scenario through various 

releases of the RT-PROXOR™ software package: 

    

Code Baseline Code Description 
Average Single Frame 
Execution Time (sec) 

Effective Frame 
Rate (Hz) 

Iter 1 

Original Matlab PROXOR™ 2017 (not designed for 
speed) 

305 
0.003278689 

Iter 2 
Optimized Matlab RT-PROXOR™ 2017 IR&D 115 

0.008695652 

Iter 3 

Hybrid Matlab RT-PROXOR™ with C++ Star 
Rendering, 2017 IR&D 

18.2 

0.054945055 

Iter 4 
GPU Based C++ RT-PROXOR™, 2018 IR&D 4.4 

0.227272727 

Iter 5 

GPU Based C++ RT-PROXOR™, 2019 Optimized 
Multi-Kernel Star Rendering Algorithm 

0.744 

1.3441 

Exhibit 14: Execution times for scenario with 2048x2048 FPA, 33x Spatial Oversample Factor, 501x 

Temporal Oversample Factor, and Multi-Kernel Star Rendering  
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The following figure (Exhibit 15) shows the performanceresults in graphical form. 

 

Exhibit 15:   Worst Case Execution Time / Frame Rate Results 

 

To further quantify performance, a subset of parameters were varied and benchmarked to show execution 

speed under a variety of realistic test conditions.  There were four different simulations that were setup for the 

benchmarking tests, one ‘typical’ long range acquisition setup (Scenario 1), and three short range acquisition 

setups with varying slew rates (Scenarios 2A, 2B, 2C).  The following figures (Exhibits 16 and 17) depict a rendered 

frame from each of these four configurations: 

 

 
Exhibit 16:   Four simulated images with varied  realistic test conditions 
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Exhibit 17:   Zoom in of the four scenarios shows intra-frame streaking effects.** 

 

The following figure (Exhibit 18) is a snapshot of the current “faster than realtime” scene generation 

performance speeds for a 2048x2048 array at a 2 second mission integration time at different temporal 

oversampling factors, as well as two different types of star rendering algorithms: single-kernel; and multi-kernel.   

The two star rendering algorithms available determine how the LOS (line of sight) is calculated and applied to 
stars that are in the apparent field of view.  In the single kernel case, a single LOS kernel is computed and applied 
to every star.  This implies there is only linear motion of the acquisition sensor system, and all subsequent star 
tracks are therefore linear and the same shape.  The multi-kernel approach calculates a unique LOS kernel for each 
star in the field of view.  This case allows for both linear and rotational motion of the acquisition system, resulting 
in a different track for each star. 

                                                                 
** Note: in scenarios 2A/2B/2C, the RSO of interest is being tracked and is visible in the middle of the frame. 
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Exhibit 18:   Faster than realtime performance speeds for a 2048x2048 array at a 2 second mission integration time 

 

The oversampling factor dictates the intraframe fidelity of the simulation (subframes generated during the 
integration period to form the final composite image).  For a scenario where there is little to no slewing, this 
parameter can be tuned to a small value with no loss in modelled performance.   Future efforts will involve 
interactively tuning this parameter during a mission based on assessing motion of the start and end of integration 
quaternion to automatically adjust the subsampled fidelity.  It would be very inefficient in terms of processing 
cycles to create 500+ temporal subsamples if there is minimal motion, and conversely too much intra-framing 
spatial smearing would be lost if a relatively high slew maneuver were initiated with a low number of subsamples. 

Current benchmarking results are showing execution framerates up to 6-7 Hz.  The benchmark results are very 
conservative, and continual improvements are underway to reach the desired objective of running at 30 Hz.  
Benchmarks were run on an NVIDIA-K6000 GPU, and going to a state-of-the-art Quadro P5000 GPU did improve 
the worst case scenario by 13%.  As GPU technology (in terms of clock cycles and number of physical cores) 
continues to improve, the current design paradigm will scale the results accordingly to create better performance 
with the current code base as-is.   Future efforts will also involve partitioning logical breaks in the processing to use 
its own dedicated GPU hardware.  The target rendering module is already factored with this in mind (having its 
own independent processing thread in the current architecture).   

Furthermore, each step of the processing chain is currently being benchmarked and assessed for performance 
and further optimization.  Currently, the vast majority of the internal RT-PROXOR™ architecture is being run brute 
force on GPUs.  However, GPU utilization is optimized for tasks that can be done in parallel through the usage of 
concurrent cores.  Some portions of the processing chain are linear and not condusive to be optimized in such a 
manner, and may increase in speed if ran on the host target without external hardware.  The flexibility of our 
architecture is condusive to testing blocks/modules on different targets, and NVIDIA has several assessment 
toolsets (such as the Visual Profiler) to provide itemized performance metrics. 
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The RT-PROXOR™ simulation world has over 100 user configurable parameters that affect the fidelity as well 
as runtime performance of the system.  The oversample factor metric presented above is just one of the many 
factors that affect this.  The results presented to this point entail “real-world” configured use cases developed at 
Ball for a variety of programmatic needs. Understanding the interaction between the various parameters may 
become especially important if achieving very high (60 FPS) frame rates proves difficult.  It may be that the desired 
frame rate is attainable with a lower, but acceptable, fidelity system and thus additional herculean efforts may not 
be necessary to achieve the system requirements.   

Alternatively, even if the highest fidelity system is always desired, understanding the interaction and the effect 

of each parameter on the fidelity may allow some of the parameters to be tuned back and still achieve the same, 

high fidelity system.  Similarly, it may turn out that adjusting only a small number of these parameters up may 

increase the fidelity of the system with little computational cost.  Being able to tune these parameters to adjust 

fidelity is part of our long-term approach and will be addressed in the future. 

 

FUTURE RT-PROXOR™ DEVELOPMENT AND APPLICATION 

Ball Aerospace’s internal development efforts in 2018 took a giant step forward in re-imagining the PROXOR™ 

technology on a completely new platform and architecture.  It was a major accomplishment rewriting the entire 

core code base in C++, and targeting key portions of the code to GPUs provided significant execution time 

improvements.  The object-oriented redesign facilitates greater readability, organization, and expandability of the 

code base in the future.  Our approach allows our code to autonomously improve as GPU technology improves in 

the future.   

Based on the work done to date, there are several ongoing efforts to expand upon and improve the existing 

technology to facilitate future SSA mission planning/development as well as accommodate and assist existing 

programmatic objectives.  The following outlines some of the ongoing efforts: 

 

• Scenario Development - Having a SGP4 TLE based front end for satellite propagation allows us to 

model virtually any scenario imaginable with existing satellite databases.  Additionally, having a 

hardware in the loop interface allows the capability to alter/perturb any scenario to simulate mission 

objectives.  We are currently developing a  user interface that will merge these two capabilities to 

allow a mission designer a flexible and visual front end to facilitate quick and effective scenario 

mockups. 

• Extended Target Rendering - The full PROXOR™ simulation has the capability to use in-house as well 

as 3rd party renderers to do extended target imaging.  Currently, RT- PROXOR™ is using Lambertian 

sphere modelling for point source rendering/target illumination, but future efforts will merge the 

ability to do full satellite rendering as well. 

• Multi-GPU Development - Current development has been done on a single GPU resource (NVIDIA 

K6000, with 2048 cores), though there is no reason this cannot be expanded to use multiple GPUs 

simultaneously, or even a cloud based approach if needed (could conceivably be useful for extremely 

large focal plane sizes, where subtasks could not be completed in one pass with the number of cores 

available on hard resources).  Currently, with the processing division, a single GPU resource has been 

identified as the best/most efficient path with respect to minimizing bottlenecks in the processing 

chain.  As extended target rendering is integrated into the system, this will change, as it will require 

its own dedicated resources. Future efforts will assess the cost function of interprocessor GPU 

communication (passing data from one resource to another), vs executing additional processing 

kernels on a single GPU for optimized execution time of the processing chain.  NVIDIA has proprietary 

card to card communication channels faster than PCI DMAs that will be explored with respect to this 

trade study. 
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RT-PROXOR™ is our tool of choice for existing and future space-based SSA and rendezvous missions.  RT-

PROXOR™ adds value with real-time high fidelity modeling of mission sensor data, enabling the government to 

solve challenging mission problems by allowing robust algorithm development and mission level analysis to meet 

their needs.  Future development includes further model enhancements for increased speed and tailoring of the 

available fidelity level to work towards real-time simulation of these phenomena. 

 

CONCLUSIONS 

Ball has developed RT-PROXOR™ to address a critical need for supporting NRT/RT/Faster-than-realtime scene 

generation for Software In the Loop (SWIL) and Hardware In the Loop (HWIL) simulations in support of high-

fidelity, extended duration, mission scenario testing of mission data processing algorithms.  This testing results in 

robust algorithms that ensure mission success.  It also increases the affordability of government programs by 

testing at high fidelity early in the program, where discovered issues can easily be rectified in a much shorter 

timeframe as compared to later in the program, where larger teams are involved and a higher level of process is 

used.  This tool can be one piece in a broader mission level analysis tool that desires to include accurate detection 

and metric accuracy results based on actual algorithms running on high fidelity scenes.  Typical desired frame rates 

of interest are about 4 – 30 frames per second (fps).  This paper shows a snapshot of Ball’s current efforts and 

details our path to achieving RT or faster-than-real-time performance.  Our current performance for realistic 

scenarios with a 2048x2048 image format is 1-6 fps for multi-star kernels (each star has its own kernel) and 3-7 fps 

for fixed star kernels.  For a non-realistic worst case scenario, used for benchmarking purposes, we showed a 300x 

improvement over our non-real-time version (PROXOR™).  Employing a GPU-based architecture that automatically 

takes full advantage of the  available GPUs, moving to a compiled language (C++) rather than a scripting language 

(Matlab), refactoring targeted areas of the code, and optimizing specific kernels has resulted in these significant 

speed improvements. 
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